Convolution Complementarity Problems with Application to Impact Problems
نویسندگان
چکیده
Convolution complementarity problems have the form 0 ≤ u(t) ⊥ (k∗u)(t)+q(t) ≥ 0 for all t. These are shown to have solutions provided k(t) satisfies some mild regularity conditions, and provided k(0) is a P-matrix. Uniqueness follows under some further mild regularity conditions. An application to an impact problem is used to illustrate the theory.
منابع مشابه
Application of Convolution of Daubechies Wavelet in Solving 3D Microscale DPL Problem
In this work, the triple convolution of Daubechies wavelet is used to solve the three dimensional (3D) microscale Dual Phase Lag (DPL) problem. Also, numerical solution of 3D time-dependent initial-boundary value problems of a microscopic heat equation is presented. To generate a 3D wavelet we used the triple convolution of a one dimensional wavelet. Using convolution we get a scaling function ...
متن کاملAugmented Lagrangian method for solving absolute value equation and its application in two-point boundary value problems
One of the most important topic that consider in recent years by researcher is absolute value equation (AVE). The absolute value equation seems to be a useful tool in optimization since it subsumes the linear complementarity problem and thus also linear programming and convex quadratic programming. This paper introduce a new method for solving absolute value equation. To do this, we transform a...
متن کاملImproved infeasible-interior-point algorithm for linear complementarity problems
We present a modified version of the infeasible-interior- We present a modified version of the infeasible-interior-point algorithm for monotone linear complementary problems introduced by Mansouri et al. (Nonlinear Anal. Real World Appl. 12(2011) 545--561). Each main step of the algorithm consists of a feasibility step and several centering steps. We use a different feasibility step, which tar...
متن کاملA Quadratically Convergent Interior-Point Algorithm for the P*(κ)-Matrix Horizontal Linear Complementarity Problem
In this paper, we present a new path-following interior-point algorithm for -horizontal linear complementarity problems (HLCPs). The algorithm uses only full-Newton steps which has the advantage that no line searchs are needed. Moreover, we obtain the currently best known iteration bound for the algorithm with small-update method, namely, , which is as good as the linear analogue.
متن کاملA Discrete Singular Convolution Method for the Seepage Analysis in Porous Media with Irregular Geometry
A novel discrete singular convolution (DSC) formulation is presented for the seepage analysis in irregular geometric porous media. The DSC is a new promising numerical approach which has been recently applied to solve several engineering problems. For a medium with regular geometry, realizing of the DSC for the seepage analysis is straight forward. But DSC implementation for a medium with ir...
متن کامل